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ABSTRACT

This paper presents a method for extracting blur/sharp regions
of interest (ROI) that benefits of using a combination of edge
and region based approaches. It can be considered as a pre-
liminary step for many vision applications tending to focus
only on the most salient areas in low depth-of-field images.
To localize focused regions, we first classify each edge as
either sharp or blurred based on gradient profile width esti-
mation. Then a mean shift oversegmentation allows to la-
bel each region using the density of marked edge pixels in-
side. Finally, the proposed algorithm is tested on a dataset
of high resolution images and the results are compared with
the manually established ground truth. It is shown that the
given method outperforms known state-of-the-art techniques
in terms of F-measure. The robustness of the method is con-
firmed by means of additional experiments on images with
different values of defocus degree.

Index Terms— Saliency, segmentation, edge detection,
blur/sharp estimation

1. INTRODUCTION

Visual attention aspects play an important role in many com-
puter vision applications. The initial objective of saliency es-
timation is to locate regions of interest (ROI) in images in
order to increase efficiency of content-based image retrieval,
compression, auto-cropping or object recognition. The idea is
based on a commonly used assumption that the most amount
of information about an image content is concentrated in the
most salient areas of the image. Consequently, a large num-
ber of methods in the field of visual communications and
image processing could be improved if the location of such
specific regions is known a priori. Generally speaking, the
most classical models define saliency based on color, texture
and orientation. However, aside from the fact that the gen-
erated saliency maps usually have a lower resolution com-
pared with input images, these models do not take into ac-
count some important visual effects. For instance, in the case
of so-called low depth-of-field (DOF) images, objects in fo-
cus appear to be sharp and visually attractive, while blurred

Fig. 1. (a) Blurred and (b) sharp regions with corresponding
shapes of (c) blurred and (d) sharp edge intensity profiles.

background does not immediately draw the conscious atten-
tion of the viewer.
In that context, [1] have recently experimentally shown this
precise influence of the sharp/blur aspect of an image part
on its saliency. These results indicate that blur information
might be integrated in attention models to efficiently improve
the extraction of salient regions. In fact, sharp objects tend to
capture attention irrespective of intensity, color or contrast.
There have been a number of methods proposed for salient
region extraction, some of which are in the context of low
depth of field images. All of them, to varying degrees, ex-
ploit an assumption that focused regions contain more high-
frequency components than the defocused background. For
example, [2] propose a computational Markov random field
formulation for generating a defocus map, where each im-
age pixel is then considered independently and claimed to
be either salient or not based on a preliminary set value of
threshold. Unfortunately, there is no detailed information on
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Fig. 2. Block diagram of our algorithm.

the method performance or comparison with alternative tech-
niques. In [3], the authors introduce the orientation angle
of the gradient map to model the focus energy and evalu-
ate the boundary and region saliencies respectively. Finally,
some post-treatments are proposed to isolate sharp objects us-
ing a boundary linking method (at cost of processing time).
In [4], the authors present a machine learning based approach
to identify focused objects using multiple segmentations and
visual descriptors computation. However, all these methods
do not explicitly involve edge processing, while, according
to [5], the edge information may appear to be especially im-
portant for the precise saliency-based segmentation.
In this paper, we present a simple and effective bottom-up
precise segmentation of low depth-of-field images. First, we
use the shape of the edge gradient profile at each particular
edge point to classify edge sharpness. After that, an image
mean shift oversegmentation in texture space coupled with a
set of classification rules allows to precisely localize the fo-
cused objects on the blurry background.
The remainder of this paper is organized as follows: section 2
describes the proposed framework. Then, section 3 provides
some experimental results and illustrates the method perfor-
mance in comparison with several alternative state-of-the-art
techniques over an established ground truth of images. Fi-
nally, conclusions and future work are provided in section 4.

2. OUR METHOD

The proposed approach is based on the idea that the edge
width (and the corresponding shape of the edge gradient
profile) at each particular edge point can be considered as a
function of the degree of blur in a given image region. In our
case, by the term ”gradient profile” we mean a distribution of
image gradient magnitude in the vicinity of a local maximum
(”edge pixel”) taken in the direction of the maximum rate of
change at this point.
According to [6], the shape of the gradient magnitude distri-
bution around edges in natural images is reasonably stable
and generally obeys the generalized Gaussian distribution

(a) Original image (b) ”Sharp” edges (c) ”Blurred” edges

(d) Segmentation (e) Mask (f) Final result

Fig. 3. Example of intermediate results.

with parameter λ ≈ 1.6 regardless of the image resolution.
The sharper the edge, the smaller is the variance of the edge
gradient profile distribution (Fig. 1).
In this work, we estimate the edge sharpness at each edge
point (x0, y0) calculating the standard deviation of the edge
gradient profile p(x0, y0) [6].

σ(p(x0, y0)) =

√√√√
∑

(x,y)∈p(x0,y0)
||G(x, y)|| · l2(x, y)

∑
(x,y)∈p(x0,y0)

||G(x, y)|| , (1)

where ||G(x, y)|| is the gradient magnitude and l(x, y) is the
distance between each point (x, y) and the edge point.
An overview of our method is sketched in Fig. 2. Some in-
termediate results obtained in each step of the process for one
image from our database are provided in Fig. 3. All steps will
be discussed in more detail in the following sections.

2.1. Edge detection

Since the quality of the edge extraction and localization is
crucial for our method, we have adapted the Canny detector
to be capable of using color information.
The Canny detector requires computing the convolution of an
image with a Gaussian Kσ0 , then with its first derivative along
each spatial direction {x, y} [7]. It can easily be done for each
color plane in the straightforward way, using RMS to combine
the obtained results for three color components. Let us denote
the result of double convolution as Fc,d, where c stands for the
color component and d for the spatial direction:

F{r,g,b},x = [({R,G,B} ∗Kσ0(x)) ∗Kσ0(y)] ∗
∂

∂x
Kσ0(x);

F{r,g,b},y = [({R,G,B} ∗Kσ0(x)) ∗Kσ0(y)] ∗
∂

∂y
Kσ0(y).

Letting r, g and b be unit vectors along the R, G and B axes
of RGB color space, we define the following quantities [8]:

f{x,y} = Fr,{x,y}r+ Fg,{x,y}g + Fb,{x,y}b,
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Fig. 4. Edge gradient calculation.

g{xx,yy} = ||f{x,y}|| =
√
F 2
r,{x,y} + F 2

g,{x,y} + F 2
b,{x,y},

gxy =
√
fx · fy =

√
Fr,xFr,y + Fg,xFg,y + Fb,xFb,y .

In this case, considering the result of convolution to be ap-
proximately corresponding to the image gradient, the direc-
tion of maximum rate of change is calculated by [8]

θ(x, y) =
1

2
arctan

(
2g2xy

g2xx − g2yy

)
, (2)

The magnitude of the rate of change (”edge strength”) in the
given direction can be calculated by

gθ =

√
(g2xx+ g2yy) + (g2xx− g2yy)cos 2θ+ 2g2xysin2θ

2
. (3)

The final steps of edge extraction are performed in standard
way following the procedure of the original Canny algorithm.

2.2. Gradient profile analysis

To estimate the edge width at each edge point, it is neces-
sary to analyze an undistorted gradient distribution, where
the original shape of the gradient profile around edges is pre-
served (consequently, the smooth gradient map obtained in
the previous step cannot be used). Here we calculate a simple
image gradient and denote it as g′θ′ [8].
In the next step the proposed algorithm requires sampling the
gradient magnitude g′θ′ along the direction of maximum rate
of change θ′. To avoid additional computations, [9] proposed
to analyze the gradient magnitude profile in the horizontal and
vertical directions and then, if needed, use their properties on
the specified maximum gradient direction. Given the gradient
distributions along the horizontal and vertical axis (g′xx and
g′yy respectively) and edge width in the corresponding direc-
tions (lx and ly respectively), the actual edge width lθ′ can be
calculated by (see Fig. 4)

lθ′ =
g′xx
g′θ′

· lx =
g′yy
g′θ′

· ly. (4)

The same relation holds for the standard deviation σθ′ repre-

Fig. 5. Width estimation of the edge gradient profile.

senting edge ”sharpness” (the standard deviation in this case
is defined by (1)):

σθ′ =
g′xx
g′θ′

· σx(px(x0)) =
g′yy
g′θ′

· σy(py(y0)), (5)

where σx(px(x0)) and σy(py(y0)) correspond to the standard
deviation of gradient profiles along the horizontal and vertical
directions respectively, which are calculated by (see [9])

σx(px(x0)) =
√
(
∑

x∈p(x0)

g′xxl
2
x)/(

∑

x∈p(x0)

g′xx),

σy(py(y0)) =
√
(
∑

y∈p(y0)

g′yyl
2
y)/(

∑

y∈p(y0)

g′yy).

Since for our purposes we localize edges using the Canny de-
tector, obtained edge points do not necessarily correspond
to pixels with maximum values of the gradient magnitude
(Fig. 5). For this reason, before performing the gradient pro-
file analysis, we find a local maximum in the chosen gradient
direction. If this maximum point cannot be reached within
the specified distance from a ”canny” pixel, the latter one is
taken out of consideration as an edge detector error.
As soon as the local maximum is reached, the gradient profile
can be analyzed by exploring magnitude values on both side
of this point along the given direction. Fig. 5 illustrates the
idea how to do it using two stopping criteria.
First, we consider only pixels with intensities not smaller than
the selected minimum level (as a fraction of the maximum
value). Second, it is necessary to ”cut” the profile if there
is another edge nearby setting a maximum positive deviation
threshold. In our implementation we set these two parameters
equal to 10% and 0.05 respectively.
Due to presence of noise, influence of nearby edges, errors of
the Canny detector, etc., the σθ′ values even for neighboring
edge pixels can vary greatly. To get a more reliable classifi-
cation and compensate for these negative effects, for further
processing we replace the actual values of σθ′ with an average
value along each edge.



Fig. 6. Comparison of the results obtained with different
methods on the given dataset

2.3. Segmentation

Since after the segmentation step it will be necessary to assign
a label to each region (either ”sharp” or ”blurred”) consider-
ing it as a single entity, the undersegmentation and combining
different objects into one region are unacceptable. To avoid
this problem, we oversegment the image using a mean shift al-
gorithm [10], which provides accurate boundaries between re-
gions. The segmentation is performed in texture space, where
each feature plane is obtained with one of Laws’ texture en-
ergy filters applied to each of RGB color planes.

2.4. Classification

In the final stage of the algorithm we classify all previously
obtained regions into 2 classes (”sharp” or ”blurred”) based
on the presence of ”sharp” and ”blurred” edges inside each
segment. For each region we calculate a set of the follow-
ing features: center of mass coordinates, region area, average
RGB values, average values for each Laws’ textures compo-
nent for intensity channel.
The further classification is based on the following logic:

• If there is only one kind of edge pixels inside the region,
the region area is greater than 64 pixels and the density
of edge pixels is greater than the minimum value be-
tween 0.015 and 90% of the average edge pixel density,
this region is labeled in accordance with edge labels.

• If one kind of edge pixels is in absolute majority (the
ratio between the number of pixels belonging to two
categories is greater than 10), the region area is greater
than 64 pixels and the edge pixel density is greater than
the maximum value between 0.015 and 90% of the av-
erage edge pixel density, region label will correspond
to the label of the majority of edge pixels.

• Else (small or sparse regions, containing different kinds
of edge pixels), the label is assigned based on labels of
k nearest neighbors already having labels (the classifi-
cation is based on the set of features defined above).

3. EXPERIMENTAL RESULTS

The proposed algorithm has been tested on a dataset of 112
high resolution images having a great variety in content, col-
ors, textures, numbers of sharp and blurred regions, their area
and location1. All parameters were optimized in advance and
the experiments were conducted automatically, with no man-
ual tuning from image to image. To illustrate the performance
of the proposed algorithm in comparison with known state-
of-the-art techniques, we used the same dataset to test 6 alter-
native methods: Achanta et al. [11], Achanta and Susstrunk
[12], Graf et al. [13], Zhang et al. [14], Kim [15], Li and
Ngan [16]. We refer these methods as EP, FL, MU, FZ, MR
an VD, respectively.
The performance of all algorithms was estimated in terms of
recall, precision and F-measure (with β = 1). Fig. 6 contains
the summarized diagram, which demonstrates that our algo-
rithm outperforms the alternative techniques mentioned above
on the given dataset and in terms of the given quality mea-
sures. The main advantage of our method is a possibility to
reach great values of recall and precision simultaneously and
in the absolute majority of cases. Examples of images from
the dataset together with the manually created ground truth
binary masks and masks obtained with our and state-of-the-
art methods are shown in Fig. 8. Subjectively, our approach
yields the most visually plausible results regardless of image
size, content and complexity.
To evaluate the robustness of our method, we have conducted
some additional experiments on images with different values
of defocus degree. We used several image sequences with
manually blurred background (using Gaussian filters with dif-
ferent parameters), as well as images of several scenes taken
with a camera with differing aperture settings. Defocus de-
gree for each image of each sequence was calculated by

D =
meansharp(g′θ′)

meanblurred(g′θ′)
.

A typical graph of F-measure vs. defocus degree for one im-
age sequence is shown in Fig. 7. It illustrates the fact that
starting from a certain relative degree of blur between ”sharp”
and ”blurred” objects present within the scene, our method
provides confident segmentation with an asymptotically in-
creasing F-measure. The observed general behavior holds for
all tested image sequencies, either synthetic or natural.

4. CONCLUSION

In this paper, we presented an efficient unsupervised method
for salient object extraction in low depth-of-field images. Our
approach is based on edge analysis and the assumption that
blurred edges are generally wider than the sharp ones. It
was experimentally shown that in comparison with alternative

1http://dossier.univ-st-etienne.fr/konikhub/public/Database/blur-sharp.zip
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Fig. 7. Illustration of our algorithm performance on a se-
quence of images with different defocus degrees.

frameworks, this method achieves higher recall and precision
rates simultaneously and in the absolute majority of cases.
In future work, we first aim to explore the effect of restricting
some image processing techniques to selected image regions,
which is necessary in such applications as saliency-aware im-
age and video coding and retrieval. Moreover, encouraged by
the high performance of the proposed method, we plan to in-
troduce its results to improve visual attention models with a
general framework taking this blur/sharp aspect into account.
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Estrada, and Sabine Süsstrunk, “Frequency-tuned
salient region detection,” IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp.
1597–1604, 2009.

[12] Radhakrishna Achanta and Sabine Süsstrunk, “Saliency
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