
  

  

Abstract— As part of a human-robot interaction project, the 
gestural modality is one of many ways to communicate. In order 
to develop a relevant gesture recognition system associated to a 
smart home butler robot, our methodology is based on an IQ 
game-like Wizard of Oz experiment to collect spontaneous and 
implicitly produced gestures in an ecological context where the 
robot is the referee. These gestures are compared with explicitly 
produced gestures to determine a relevant ontology of gestures. 
This preliminary qualitative analysis will be the base to build a 
big data corpus in order to optimize acceptance of the gesture 
dictionary in coherence with the “socio-affective glue” 
dynamics. 
Index Terms: Human-Robot Interaction, gesture 
recognition, machine learning, “socio-affective glue”, 
Wizard of Oz experiment 

I. THE INTERABOT PROJECT ISSUES: AN AUTOMATION ENVIRONMENT 
BUTLER ROBOT SOCIO-AFFECTIVELY ATTACHED TO THE USER 

The common goal of the partners (Awabot Company, LIG 
CNRS Lab, LIRIS CNRS Lab, Voxler Company) involved in 
the Interabot project (Investissements d’Avenir BGLE2 of 
French Industry Ministry) is to develop a butler robot for an 
automated environment which is socio-affectively bound to 
the user, and strongly rooted in the ecological reality of this 
specific Human Robot Interaction (HRI) context. Our 
approach is consequent to the concept of “companion robot” 
which is an ill-posed problem: the robot augmenting the 
human social reality cannot appear directly with a companion 
social role, except perhaps while it borrows the pet role (the 
first moment a puppy appears in someone’s life, it is 
affectively glued). 

The robot Emox used in this project is proposed as a 
service robot, and because it is a service robot, it is relevant 
and useful, whereas it is inevitably “another”. Therefore, it is 
perceived as a communicating interactive entity, no matter its 
given communicative competences. While this robot is 
introduced as a service robot, we highly expect to see what 
we call the “socio-affective glue” (that could be explained as 
the consequence of a grooming engagement) building 
function to develop companion characteristics. We even 
noticed with elderly people in need of practical and useful 
services, that a robot executing smart home automated actions 
 

1 University Grenoble Alps, LIG, UMR CNRS 5217, France  
(e-mail: firstname.surname@imag.fr) 

2 INSA-Lyon, LIRIS, UMR CNRS 5205, F69621, France 
(e-mail: firstname.surname@liris.cnrs.fr) 

3 Awabot Company, Villeurbanne, France 
(e-mail: florian.nebout@awabot.com) 

4 AMIQUAL4HOME, INRIA, Grenoble, France 
(e-mail: nicolas.bonnefond@inria.fr) 

5 INRIA, Grenoble, France (e-mail: amaury.negre@imag.fr) 

is perceived as a companion, not only as a service robot if it 
performs a “socio-affective coaching” [1]. Thus, outside the 
specific pet stance which implies directly a relationship with 
the owner, all social roles steeped in the social space induce 
the cause of the relationship’s building function. 

Once the roles are defined, the relationship is built in a 
dynamic process which glues the two correspondents: roles 
induce the relationship allowing the glue to maintain the roles 
efficiency which in return modifies the glue modulating the 
relationship. As a consequence of this dynamic loop, the 
correspondents tend to be qualified as companions. Indeed the 
description of companion robot as a primary (and not derived) 
characteristic does not seem to be so relevant [2][3][4][5]. 
The animistic process defining robots are constrained by the 
anthropomorphisation tendency [5][6][7], especially if its 
appearance is human-like or pet-like. 

In order to minimize the biases in this project (induced by 
all the “uncanny valley” effects in particular), the role given 
to the robot is absolutely not transferred from a possible 
human role: it is an automation controller (manipulating 
computational protocol). Moreover this robot has to be kept 
away from a human-like or a pet-like appearance to avoid the 
bias of anthropomorphisation and this justify our choice for 
the Emox robot developed by our partner Awabot (see 
Figure1). 

One of the main hypothesis of this work lies on the socio- 
affective gluing process, key tool based on human dialog 
interaction primitives: the language’s nature is dynamically 
timed with the glue level [1]. This timed evolution has also 
been noticed through the interpersonal synchrony [8]. The 
hypotheses of the social gluing skills given in the Interabot 
project to the robot, are increasing during the relationship and 
are based on: (1) no speech, (2) pure prosodic mouth noises 
supposed to be the glue’s tools, (3) lexicons with supposed 
glue prosody as interjections and onomatopoeia and (4) 
subjects commands imitations with supposed glue prosody 
[9]. These increasing gluing materials have been confirmed as 
efficient since it has been observed that the human vocal and 
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Figure 1.  The Emox Robot (Awabot Company) 



  

linguistic interactional behaviors are strongly modulated and 
transformed during the gluing process [10]. The 
communication based on these phenomena is multimodal 
where gestures are undifferentiated cues. 

Anyway, the human-to-human gestural communication is 
a very rich system, involving several studies 
[11][12][13]...etc. The human gestuality addressed to robots is 
described both as specific or as directly transplanted from 
human-to-human interaction [14][15][16]. This present 
work’s final goal is to build a large database of gestures, in 
order to train the gesture recognition system developed by the 
LIRIS partner for the Interabot Project. 

Gesture recognition is performed automatically based on 
machine learning. The classifier takes as input very short 
video sequences captured with a consumer depth camera 
mounted on the robot, and outputs for each time instant 
whether a gesture has been performed, and which of the 
predefined gesture classes has been performed. The targeted 
gesture recognition system used for this project is based on 
convolutional deep learning [17][18] in a multimodal setting 
(RGB color input video, depth input video, audio). Each 
visual modality captures spatial information at a particular 
spatial scale, such as motion of the upper body or a hand, and 
the whole system operates at two temporal scales, namely 
short dynamical poses and longer periods corresponding to 
whole gestures. 

In a supervised learning setting, a large training set of 
manually annotated input data samples is created, and a 
gesture classifier is trained off-line minimizing classification 
error on this training set. This classical principle, called em- 
pirical risk minimization, aims at minimizing classification 
error on future (unknown) real data, i.e. gestures performed 
by users in a real setting. 

Success depends on the domain shift between the training 
set and the test set. Classically in machine learning, the 
difference in the distributions of the training set (the man- 
ually annotated training gestures) and the future unknown test 
set (the real gestures performed in a production setting) must 
be as small as possible. This requires users to perform the 
gestures as closely as possible to the way they were 
performed during the training phase. 

Minimizing the domain shift could theoretically be done 
by forcing users to accept the predefined gestures chosen 
arbitrarily by the designers of the robot. However, our 
objective in this project is to optimize acceptance of the 
gesture dictionary by the target public, and also to maximize 
the social glue created by this gestures. 

Before collecting the training gesture set used for super- 
vised learning of the gesture recognition system, this present 
study aims at defining which kind of different gestures will be 
produced for a same command in a real ecological long life 
Emox-human interaction. In this ecological context, our 
purpose is to verify if the human gestural behaviors are 
modulated and transformed through the increasing glue be- 
tween Emox and the human, similarly to the vocal behaviors 
modulation and transformation. 

To verify this hypothesis, we first collect with a Wizard of 
Oz protocol, a corpus of spontaneous gestures the subjects use 

to guide the robot on live, without having any consigns about 
gestural commands for the robot, and mainly without being 
aware that their gestural behaviors could be the goal of the 
experiment. The given goal was set in order to attract their 
attention on an IQ game-like task which could be related to 
their gestural behavior. Just after the experiment, subjects are 
asked to explicitly produce gestures devoted to control the 
robot. 

The main observations are (1) the implicitly vs. explicitly 
produced gestures are quite systematically different kinds of 
gestures for the same “command” (2) the implicitly produced 
gestures clearly evolve during the interaction, alongside the 
gluing process: the gestures become more subtle as the glue 
level rises and the command ontology is blended with some 
other kind of information related to the built socio-affective 
relationship. We observe here how the natural gesture 
communication of the human is spontaneously adapted to 
such a robot, without to give any indication to the human of 
possible restrictions in th gestures processing understanding 
of robot. 

II. METHODOLOGY 

A. EmOz Wizard of Oz platform to collect an ecological 
corpus in Domus Living-Lab 

The experiment was conducted at the LIG lab’s Domus 
smart home1, designed to observe the users activities inter- 
acting with the environment. This Living-Lab is based on the 
openHAB2 home automation open source middleware that 
centralizes and controls the different actuators and sensors 
using various protocols (KNX, DMX, UPnP, RFID, 
MQTT...). 

Seven microphones and six video cameras set in the flat 
ceiling, allowing the supervising experimentation from a 
control room. This room makes it possible to use a Wizard of 
Oz method, in which the experimenters are hidden during the 
experiment to control remotely the automation system. 

EmOz, the Wizard of Oz platform [10] was developed to 
control the Emox robot primitive sounds and moves, as well 
as the Domus smart home automation. An Xbox wireless 
controller is also used to drive the robot introduced as the 
smart home butler, while the subjects consider it completely 
autonomous because of the EmOz platform and the associated 
controlled scenario. We used the robot camera view to ease its 
driving and to increase its behavior credibility during the IQ 
game-like experiment, in which this robot is also the referee. 

With regard to recording and analyzing the subjects’ 
gestures, we mainly used a GoPro camera placed on their 
forehead. But, sometimes, it could not efficiently capture 
wider gestures. Wider views were additionally captured with 
six axis IP cameras (two per room except for the bathroom) 
and three more D-Link IP Camera in each room to have an 
extra distant point of view. In total, eleven cameras recorded a 
subject per session, as well as seven Sennheiser radio 
microphones set into the ceiling (two per room except one for 
the bathroom) and a lapel microphone recording 

 
1 https://hal.archives-ouvertes.fr/hal-00953242/file/puc2010.pdf 
2 www.openhab.org 



  

simultaneously audio channels using the StreamHIS software 
developed by the LIG lab. 

B. A pretext task: an IQ game-like experiment 
In order to collect a spontaneous gesture corpus in an HRI 

ecological situation, we present to the subjects a false 
experimental goal in which we evaluate their intelligence and 
their ability to keep focused on a task while their environment 
is disturbing them. Where in fact we want to capture and 
analyze their gestural behaviors in their interactions with the 
robot. 

The scenario was based on a reversed rebus where the 
subjects had to find a maximum of objects illustrating a 
phonological part of a given sentence. These objects were 
scattered all around Domus, and the task was to gesturally 
guide Emox, the game referee, in front of each objects to be 
validated. In fact, we pretexted a malfunction of the robot 
voice recognition system (developed by the LIG lab) due to 
its microphone, so we highly recommended using the gesture 
recognition system (the future LIRIS partner system). We told 
that this robot had learned the valid objects previously with a 
pattern recognition software. The subjects were not allowed to 
move anything in the smart home during their task. We never 
explained how to guide the robot, as we wanted to observe 
what types of gestures would emerge naturally. To maintain 
the participants attention on the pretext task, we activated 
punctual and varied automated actions in the smart home 
(shutters closing, lights dropping, LED blushing, thematic 
music, TV blinking, robot dancing, strange noises like the 
hair dryer... and so on, all set in four different scripts) as we 
pretended to measure the subjects resistance to environmental 
disturbances. The IQ game proposed also to calculate a score 
regarding the number of objects the subjects found out, 
because each part of the rebus is associated to several objects. 
That brought the subjects to forget about the gestures they 
made. The sentence given to the subjects was: “I am used to 
save data”3. The subjects were alone with the robot to resolve 
this rebus during the experiment which was not limited in 
time. Once the subjects decided they were done with the 
game, they had to show a pictogram to the robot that ended 
the game and sent a call to the experimenter who came back 
in Domus. 

C. Ecological situation: spontaneous gestures implicitly 
produced to interact with the robot 

During the ecological part of the experiment, the subjects 
conducted Emox near the objects they wanted to validate. 
Therefore, after each suggestion, the robot did a positive or a 
negative gesture associated to a vocal feedback. 

At first, the Wizard of Oz engineers, as well as the robot 
were not used to the subjects gestures, so the reaction of the 
robot was slower and not as fluent as it could be later in the 
experiment. Then it became more and more aware of the 
subjects gestures to produce smoother reactions. 
Nevertheless, as Wizards of Oz, we also wanted to get other 
kind of gestures from the subjects so we induced them, using 
Emox “impotence” to some reactions that could lead to other 
form of gestures (e.g. Emox continues a trajectory after a sign 

 
3 The original command was: “je sers à sauvegarder les données” 

like “follow me” to see if the subjects ask for the robot to stop 
or not, and how they will do that). The figure 2 illustrates the 
EmOz scheme to collect these spontaneous gestures. 

D. Explicitly produced gestures 
Once the IQ game was finished, during a debriefing that 

explained the experiment’s real goal, the participants were 
explicitly asked to do the same kind of gestures they did 
implicitly during the experiment in order to compare them. 
The explicit commands to address to Emox were: “go to a 
specific location”, “follow me”, “come close to me”, “confirm 
that you have understood the instructions”, “I disagree with 
your proposal”, “I agree with your choice”, “retreat”, “pass in 
front of me”, “wait”, “you made a mistake”, “go recharge 
your batteries”, “turn left”, “turn right”, “speed up and slow 
down”, “repeat”. The participant was placed in front of the 
robot, set with a lapel microphone to be recorded. The 
experimenter was behind the robot, holding a GoPro camera 
to film the subject. The subject was asked to do each 
command twice, the first only gesturally, the second time 
vocally. We noticed that sometimes it is difficult for the 
subject to do a vocal command without adding the gestural 
feature, which is also the case for some participants during the 
ecological context. Mostly, the gesture associated to a vocal 
cue is also not exactly the same as the one in gesture only 
condition. 

E. Auto-annotation 
The auto-annotation [19] refers to the subjects’ 

autobiographical memory [20] by showing them their 
experiment videos, referring to their naive point of view 
concerning their own reactions. As experimenters, we are 
motivated to discover what gestural strategy the participants 
used to guide the robot but without ever evoking this idea, we 
helped the subjects to remember their feelings, intentions, 
emotions, cognitive processes, etc., all information known as 
the Feeling of Thinking [21]. To describe these annotation 
cues, the subjects used their own words and vocabulary. They 
could even draw or express their description in every 
modality they wanted, but the experimenter should never 
suggest any label neither consider himself what can be or not 
a gesture. 

 
Figure 2.  Spontaneous gestures capture with EmOz (pointing 

example) 



  

For this experiment, we show step by step the video of the 
implicitly produced gestures recorded with the GoPro 
Camera. The idea is also to reveal what the subject considers 
as gestural units, so to understand when a gesture begins and 
when it finishes. The gesture segmentation is done by the 
subject himself. 

One auto-annotation session was managed by two 
experimenters. While one of the experimenter transcribed the 
subjects explanation, another one lead and guided the 
participant to get the labels for each determined gesture. Each 
time a subject suggested an accurate description on a precise 
action at a specific time, the leading experimenter brought 
him a more detailed description by reusing the employed 
subjects vocabulary and trying to focus better on the cues (in 
the present study, the gestures produced) that the 
experimenter wanted to be labeled but that he never suggested 
directly. The sessions were recorded with a microphone and 
the participant was filmed with a GoPro camera to catch 
possible gestures they can do to explicit their annotation. 
Finally, to ease the transcription, we used the Snagit software 
to record the annotation screen using the Elan software 
(EUDICO Linguistic Annotator). 

The Auto-annotation sessions are not finished yet, so we 
only have some tendencies for the labels. For example, the 
subjects suggested labels like “come close to me”, “follow 
me” or “stop”. We also observed static gestures (like pointing 
an object), or dynamic absolute gestures (for example, the 
participant draw a virtual line with his finger between the 
robot’s camera and the aimed object).  

F. Label validation through perception test 
Knowing that our long term objective is to make Emox 

aware to recognize and to interpret human gestures, the 
gestural recognition algorithm must be able to match motion 
and its meaning. The fact that the robot cannot make sense of 
any human gestures, while it can capture the movements itself 
is a semantic gap. To fix that, we firstly need to determine a 
label for each gesture we have collected during the 
experiment and to understand what does this gesture suggest. 
The labels are inferred from the subjects’ auto-annotation that 
needs to be validated perceptively to objectivate the 
subjectively auto-annotated label. At this stage of our study, 
we have not yet performed these perception tests with new 
naive judges, but ideally it has to be done to: (1) verify if the 
gestures proposed are relevant gestural units or improperly 
cut composed parts, (2) have good gestural exemplaries to 
make a suitable ontology. 

III. THE GEE CORPUS 

The GEE corpus stands for Gestural Emoz Emox and is 
composed by 22 subjects (13 men and 9 women) between 18 
and 45 years old. They are mainly french, but it’s important to 
remark that some participants have different cultural origins, 
such as: italian, spanish, british, and japanese. Each subject 
spent 3 hours on average to complete the experimentation 
(including auto-annotation sessions). The IQ game sessions 
lasted between 11 minutes for the fastest subject and 1 hour 
and 8 minutes for the slowest one. Auto-annotation sessions 
lasted between 36 minutes (min) and 3 hours (max). The IQ 
game provides 30 objects to find, so we can suppose that each 

subject can do up to thirty predictable interactions with the 
robot, and few more, knowing that a single interaction can 
include several gestures. Actually, we noticed, at this stage, 
around fifty gestures on average for the less communicative 
subjects at the end of the IQ game, and around a hundred 
gestures on average for the most communicative ones; mostly 
due to the repeated similar objects submissions or wrong 
objects submissions. 

A. Implicit vs. explicit gestures 
Most of the time, the implicit gestures that are produced 

spontaneously and the explicit gestures that are produced on 
demand are quite different. 

As we can see in Figure 3, in implicit condition, the 
subject #1 puts her right hand at the back of Emox to make it 
go ahead and follow her. 

This same subject #1, when she is told, explicitly to 
execute the command “follow me”, did as in Figure 4. She 
decides to turn sideways a little on the left, then steps aside, 
and she slaps her thigh with her right hand. 

In this second example Figure 5, the subject #2 has found 
an object to show to Emox. To do this, she is almost on her 
knees, sideways, and she swings her right arm when barely 
pointing Emox to make it come close to her. 

 
Figure 4.  Implicit gesture for “Follow me” (subject #1) 

 
Figure 5.  Explicit gesture for “follow me” (subject #1) 

 
Figure 6.  Implicit gesture for “come close to me” (subject #2) 

 
Figure 3.  Explicit gesture for “come close to me” (subject #2)  



  

This subject #2, for the explicit command “come close to 
me”, faces the robot and she raises her right arm a little in 
front of her as in Figure 6. Next she snaps her fingers and 
then puts her hand behind  her back, and waits. 

The third example shows another implicit gesture for 
“come close to me” produced by the subject #3, who is 
standing sideways from Emox, but looking at it, his hands in 
his pockets (see Figure 7). When he gets its attention (which 
means its camera is directed to him), he slowly side-steps to 
the direction he wants to go, waiting for the robot. 

The subject #3, in explicit condition, takes his hands out 
of his pockets, he raises his arms in front of him and points 
Emox with his two outstretched index fingers. From that 
position he bends his elbows until his hands are against his 
stomach. Finally he puts his hands back in his pockets as in 
Figure 8. 

Furthermore, big differences appear when a subject exe- 
cutes the same gesture within an implicit situation, and then 
during an explicit situation. For example, subject #3 never 
used his arms or even his hands, but then, to express the exact 
same order within an explicit situation, he only used his arms, 
hands, and fingers, and never his legs. 

Moreover for some explicit commands from our list, the 
subjects considered them as similar and redundant (e.g. do a 
u-turn vs. turn around), whereas this redundancy was not real 
in the ecological context. Sometimes commands proposed 
explicitly were never addressed to Emox while the subjects 
had some behaviors revealing this command attitude in the 
spontaneous context (e.g. “I don’t agree” which was never 
produced for the robot but always for the subject himself). On 
the contrary there are some attitudes never implicitly 
produced by gestures while they were frequently expressed by 
the subjects (e.g. “go away” never appeared in gestures while 
the subjects said many time to be troubled by the robot which 
was “staying in their legs”). Finally the subjects implicitly 
produced some gestures that we have not planned in our 
commands list (e.g. “catching the robot attention” particularly 
produced while the robot was not looking at the subject or 
before he gives a command). 

B. Gesture changes between subjects, through time and 
along the “glue” dynamics 

In the ecological context implying implicit gestures, we 
noticed some subtle changes for some of the same command 

gestures in the conditions where we included a positive gluing 
process through the Emox robot feedbacks and reactions. We 
tested this phenomena only on a few people and we intend to 
extend this kind of experimentation in future studies. We have 
not yet analyzed precisely the gestural changes, but we still 
observed differences for the command “follow me”. In fact, at 
the beginning of the experiment, the subjects produced 
accurate and detailed gestures, whereas at the end of the 
spontaneous gestures phase, the same gesture is quicker and 
shorter which can be due to the fact that the robot and the 
subjects get used to each other and changed their reactions 
through time. Some subjects also tend to do more frequently 
and different “follow me” gestures at the end to have the 
robot close to them. This can be explained by the pretext task 
constraints, as the subjects do not have to look for the robot 
when they want to point it an object, but it also can be 
possible that they want to have Emox close to them because 
their relationship changed. In both cases, we can clarify this 
phenomenon with the auto-annotations associated to these 
gestures. It can be supposed that the gestures would not 
become subtel if the user would be aware about gesture 
recognition constraints, but it must be noted that many 
subjects have supposed poor and constrained visual 
recognition by the recognition, and have however produced 
subtel gestures as soon as the glue is installed (as it has been 
already observed in different ECA studies [22]). 

On the other hand, gestures change between subjects in 
both implicit and explicit condition. For instance, among 
implicit gestures, the subjects #2 and #3 used their own 
strategy to command Emox in two very different ways, to 
gesturally say “come close to me”, and other means have also 
emerged. However, some gestures seemed to remain on one 
participant to another, despite their individual specificities. 
Nevertheless, we haven’t yet analyzed deeper enough at this 
point, to place a label on these types of gestures. The variation 
of these gestures, auto-annotated and validated, leads to 
determine gesture prototypes. The gesture ontology will be 
reproduced by imitating many time the prototypes to build the 
data corpus constrained by the gestural machine learning 
system (LIRIS partner). 

IV. TRAINING DATASET DEFINITION AND COLLECTION BY 
MOTION IMITATION 

Once the dictionary of targeted gestures is defined, in- 
cluding the exact semantic meanings of each gesture class, a 
training set will be constructed for off-line training of the 
gesture recognizer. Supervised training of deep visual models, 
as the ones we employ in our system, requires very large 
amounts of training data. In principle, the training data 
gesture samples should contain all possible gesture classes 
and widely cover variations in input variables and conditions, 
such as the following: (1) camera viewpoint with respect to 
the person performing gestures; (2) eventual direction pointed 
by the person, if the gesture class concerns an object in the 
scene; (3) differences in the morphology of the person’s body 
(size, body mass and proportions etc.); (4) speed and rhythm 
of the gesture performance; (5) sex and age of the person. 

Differences in viewpoints are due to different positions in 
which people can address the robot, but also on the type of the 
robot itself. Different robots can result in different camera 

 
Figure 7.  Implicit gesture for “come close to me” (subject #3) 

 
Figure 8.  Explicit gesture for “come close to me” (subject #3) 



  

height, which result in viewpoints changes and significantly 
modify gesture appearances. Different cameras are also 
characterized by different intrinsic parameters such as focal 
length etc. The deep multi-modal system developed for this 
project has compared very favorably with respect to the state 
of the art when trained on the public dataset ChaLearn 2014 
looking at people: gesture recognition comprising 14.000 
upper body gestures of 20 classes performed by 20 different 
people [18]. Our system uses different modalities: 

• the full body pose estimated by a middle ware, such 
as MS Kinect SDK; 

• deep learning on short sequences of the right and left 
hand; 

• deep learning on short audio-sequences. 

Features from the full body (the full body skeleton) have 
been made invariant explicitly in order to compensate for 
differences in viewpoints, morphology, size etc. However, 
features from handpose, which significantly contribute to the 
systems performance, are not invariant, which is one of the 
drawbacks of methods based on deep learning of 
representations. As a consequence, the training set should 
cover as widely as possible all variations in input data 
expected during test time. 

V. CONCLUSION 
In this preliminary paper we used an IQ game-like Wizard 

of Oz scenario to collect spontaneous gestures produced in an 
ecological situation to propose an ontology of gesture that can 
be used to develop a gesture recognition tool for HRI context. 
We started to compare these implicitly produced gestures to 
explicit gestures to get the relevance of the gestural 
prototypes. Thus these gestures can be the base for an 
intelligent, incremental and long-life machine learning system 
which can evolve with the gluing process established between 
the robot and its user. In order to take into account the LIRIS 
system’s big data constraints, the ontology determined by our 
analyses will be imitated to build a huge data corpus of 
relevant gestures. 
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