Correlated Uncertainty for Learning Dense Correspondences from Noisy Labels

Natalia Neverova, David Novotny, Andrea Vedaldi Facebook Al Research

Dense Pose

Label pixels with their location on a surface of a reference 3D human body model

facebook Artificial Intelligence

Learning Dense Pose

Input image I

Deep net →

Predicted UV

Pixel i

GT label
$$y_i \in R^2$$
 prediction $\hat{y}_i \in R^2$ residual $\delta_i = y_i - \hat{y}_i$

Naive approach:

$$\mathcal{E} = \sum_{i} \|\delta_i\|^2$$

Dense Pose annotations are noisy

Annotation process:

Manual annotations

Rendered image

Dense Pose annotations are noisy

Annotations projected on the 3D model:

Elementary uncertainty model

Input image I

Predicted UV

Deep net

- Model $p(\delta_i)$ for every pixel i [1,2]:
 - normal distr. of residuals δ_i :

$$p(\delta_i) = \mathcal{N}(\delta_i | 0, \sigma_i)$$

network predictions:

$$\hat{y}_i \in \mathbb{R}^2$$
 and $\sigma_i \in \mathbb{R}$

maximize log-likelihood:

$$\mathcal{E} = -\sum_{i} \log N(\delta_i | 0, \sigma_i)$$

- 1) Isotropic variance non-directional errors
- 2) IID assumption on errors
- [1] Novotny et al.: Learning 3D Object Categories By Looking Around Them
- [2] Kendall & Gal: What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?

Higher-order uncertainty model

Model $p(\vec{\delta})$ for the whole part:

$$p(\overrightarrow{\delta})$$
 gaussian: $\Sigma = egin{bmatrix} \Sigma_1 + \sigma I & \sigma I & \dots & \sigma I \\ \sigma I & \Sigma_2 + \sigma I & \dots & \sigma I \\ \vdots & \ddots & \ddots & \vdots \\ \sigma I & \sigma I & \cdots & \Sigma_N + \sigma I \end{bmatrix}$

1) Directional distr. of residuals δ_i :

$$p(\delta_i) = \mathcal{N}(\delta_i | 0, \Sigma_i) \quad \Sigma_i \in \mathbb{R}^{2 \times 2}$$

network prediction

 ullet 2) Overall part-specific offset ϵ

$$p(\epsilon) = \mathcal{N}(0, \sigma I)$$

Experiments

Performance on DensePose-COCO for different error thresholds

uv-loss	1 cm	2 cm	3 cm	5 cm	10 cm	20 cm
MSE	4.44	16.21	29.64	52.23	76.50	85.99
full	5.99	19.97	34.16	55.68	77.76	85.58

Ours

facebook Artificial Intelligence

Experiments

Ablation of the probabilistic terms

LogLikelihood attained on test set of DensePose-COCO

facebook Artificial Intelligence