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Abstract. We present a method for gesture detection and localization
based on multi-scale and multi-modal deep learning. Each visual modal-
ity captures spatial information at a particular spatial scale (such as
motion of the upper body or a hand), and the whole system operates at
two temporal scales. Key to our technique is a training strategy which
exploits i) careful initialization of individual modalities; and ii) gradual
fusion of modalities from strongest to weakest cross-modality structure.
We present experiments on the ChaLearn 2014 Looking at People Chal-
lenge gesture recognition track, in which we placed first out of 17 teams.
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1 Introduction

Visual gesture recognition is one of the central problems in the rapidly grow-
ing fields of human-computer and human-robot interaction. Effective gesture
detection and classification is challenging due to several factors: cultural and
individual differences in tempos and styles of articulation, variable observation
conditions, the small size of fingers in images taken in typical acquisition con-
ditions, noise in camera channels, infinitely many kinds of out-of-vocabulary
motion, and real-time performance constraints.

Recently, the field of deep learning has matured and made a tremendous im-
pact in computer vision, demonstrating previously unattainable performance on
the tasks of object detection, localization [1, 2], recognition [3] and image seg-
mentation [4, 5]. Convolutional neural networks (ConvNets) [6] have excelled on
several scientific competitions such as ILSVRC [3], Emotion Recognition in the
Wild (EmotiW 2013) [7], Kaggle Dogs vs. Cats [2] and Galaxy Zoo. Taigman et
al. [8] recently claimed to have reached human-level performance using ConvNets
for face recognition. On the other hand, extending these models to problems in-
volving the understanding of video content is still in its infancy, this idea having
been explored only in a small number of recent works [9–11]. It can be partially
explained by lack of sufficiently large datasets and the high cost of data labeling
in many practical areas, as well as increased modeling complexity brought about
the additional temporal dimension and the interdependencies it implies.
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The first gesture-oriented dataset containing a sufficient amount of training
samples for deep learning methods was proposed for the the ChaLearn 2013
Challenge on Multi-modal gesture recognition. The deep learning method we
describe here placed first in the 2014 version of this competition [12].

A core aspect of our approach is employing a multi-modal convolutional
neural network for classification of so-called dynamic poses of varying durations
(i.e. temporal scales). The best single scale configuration corresponding to a
certain formulation of the dynamic pose alone places first (see Section 5 for
more details), while introducing parallel multi-scale paths leads to an additional
gain in performance. Finally, we find it interesting to provide a comparison of
the proposed approach with a baseline model employing a popular ensemble
method. The performance of a hybrid solution, leading to another small gain, is
reported for a reference.

Data modalities integrated by our algorithm include intensity and depth
video, as well as articulated pose information extracted from depth maps. We
make use of different data channels to decompose each gesture at multiple scales
not only temporally, but also spatially, to provide context for upper-body body
motion and more fine-grained hand/finger articulation. We pay special attention
to developing an effective learning algorithm since learning large-scale multi-
modal networks like the one we train on a limited labeled dataset is a formidable
challenge.

Our classification model outputs prediction updates in real-time in frame-
wise manner. Nevertheless, since temporal integration is involved, the classifi-
cation model suffers from a certain degree of inertia. Furthermore, due to high
similarity between gesture classes on pre-stroke and post-stroke phases, frame-
wise classification at that time is often uncertain and therefore erroneous. To
compensate for these negative effects, an additional module is introduced for
filtering, denoising and more accurate gesture localization.

The major contributions of the present work are the following: (i) we de-
velop a deep learning-based multi-modal and multi-scale framework for gesture
detection, localization and recognition; and (ii) propose a progressive learning
procedure enabling our method to scale to a higher number of data modalities.

2 Related work

Gesture recognition — Traditional approaches to action and distant gesture
recognition from video typically include sparse or dense extraction of spatial or
spatio-temporal engineered descriptors followed by classification [13–18].

Near-range applications may require more accurate reconstruction of hand
shapes. In this case, fitting a 3D hand model, as well as appearance-based algo-
rithms provide more appropriate solutions. A group of recent works is dedicated
to inferring the hand pose through pixel-wise hand segmentation and estimat-
ing the positions of hand joints in a bottom-up fashion [19–22]. In parallel,
tracking-based approaches are advancing quickly [23, 24]. Finally, graphical mod-
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els, exploring spatial relationships between body and hand parts, have recently
attracted close attention from the vision community [25, 26].

Multi-modal aspects are of relevance in this domain. In [27], a combination of
skeletal features and local occupancy patterns (LOP) are calculated from depth
maps to describe hand joints. In [28], the skeletal information is integrated in
two ways for extracting HoG features from RGB and depth images: either from
global bounding boxes containing a whole body or from regions containing an
arm, a torso and a head. Similarly, [29] fuse skeletal information with HoG
features extracted from the RGB channel, while [30] propose a combination
of a covariance descriptor representing skeletal joint data with spatio-temporal
interest points extracted from the RGB modality augmented with audio features.

Representation learning — Various fundamental architectures have been
proposed in the context of motion analysis for learning (as opposed to hand-
crafting) representations directly from data, either in a supervised or unsuper-
vised way. Independent subspace analysis (ISA) [31] as well as autoencoders [32,
9] are examples of efficient unsupervised methods for learning hierarchies of in-
variant spatio-temporal features. Space-time deep belief networks [33] produce
high-level representations of video sequences using convolutional RBMs.

Vanilla supervised convolutional networks have also been explored in this
context. A method proposed in [34] is based on low level preprocessing of the
video input and employs a 3D convolutional network for learning of mid-level
spatio-temporal representations and classification. Recently, Karpathy et al. [10]
have proposed a convolutional architecture for general purpose large-scale video
classification operating at two spatial resolutions (a fovea stream and a context
stream).

A number of deep architectures have recently been proposed specifically for
multi-modal data. Ngiam et al. [35] employ sparse RBMs and bimodal deep
antoencoders for learning cross-modality correlations in the context of audio-
visual speech classification of isolated letters and digits. Srivastava et al. [36]
use a multi-modal deep Boltzmann machine in a generative fashion to tackle the
problem of integrating image data and text annotations. Kahou et al. [7] won the
2013 Emotion Recognition in the Wild Challenge by building two convolutional
architectures on several modalities, such as facial expressions from video frames,
audio signal, scene context and features extracted around mouth regions. Finally,
in [37] the authors propose a multi-modal convolutional network for gesture
detection and classification from a combination of depth, skeletons and audio.

3 Gesture classification

On a dataset such as ChaLearn 2014, we face several key challenges: learning
representations at multiple spatial and temporal scales, integrating the various
modalities, and training a complex model when the number of labeled examples
is not at web-scale like static image datasets (e.g. [3]). We start by describing
how the first two challenges are overcome at an architectural level. Our training
strategy to overcome the last challenge is described in Sec. 3.4.
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Fig. 1. The deep convolutional multi-modal architecture operating at 3 temporal scales
corresponding to dynamic poses of 3 different durations.

Our proposed multi-scale deep neural model consists of a combination of
single-scale paths connected in a parallel way (see Fig. 1). Each path indepen-
dently learns a representation and performs gesture classification at its own
temporal scale given input from RGB-D video and articulated pose descriptors.
Predictions from all paths are then aggregated through additive late fusion. This
strategy allows us to first extract the most salient (in a discriminative sense) mo-
tions at a fine temporal resolution and, at the same time, consider them in the
context of global gesture structure, smoothing and compensating for per-block
errors typical for a given gesture class.

To differentiate among temporal scales, a notion of dynamic pose is intro-
duced. By dynamic pose we mean a sequence of video frames, synchronized
across modalities, sampled at a given temporal step s and concatenated to form
a spatio-temporal 3d volume. Varying the value of s allows the model to lever-
age multiple temporal scales for prediction, thereby accommodating differences
in tempos and styles of articulation of different users. Our model is therefore
different from the one proposed in [4], where by “multi-scale” the authors imply
a multi-resolution spatial pyramid rather than a fusion of temporal sampling
strategies. Regardless of the step s, we use the same number of frames (5) at
each scale. Fig. 1 shows the three such paths used in this work (with s = 2 . . . 4).
At each scale and for each dynamic pose, the classifier outputs a per-class score.

All available modalities, such as depth, gray scale video, and articulated
pose, contribute to the network’s prediction. Global appearance of each gesture
instance is captured by the skeleton descriptor, while video streams convey ad-
ditional information about hand shapes and their dynamics which are crucial
for discriminating between gesture classes performed in similar body poses.

Due to the high dimensionality of the data and the non-linear nature of
cross-modality structure, an immediate concatenation of raw skeleton and video
signals is sub-optimal. However, initial discriminative learning of individual data
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representations from each isolated channel followed by fusion has proven to be
efficient in similar tasks [35]. Therefore, in our approach, discriminative data
representations are first learned within each separate channel, followed by joint
fine tuning and fusion by a meta-classifier (independently at each scale, for more
details see Sec. 3.4). A shared set of hidden layers is employed at different levels
for, first, fusing of “similar by nature” gray scale and depth video streams and,
second, combining the obtained joint video representation with the transformed
articulated pose descriptor.

3.1 Articulated pose

We formulate a pose descriptor, consisting of 7 logical subsets, and allow the
classifier to perform online feature selection. The descriptor is calculated based
on 11 upper body joints, relevant to the task, whose raw, i.e. pre-normalization,
positions in a 3D coordinate system associated with the depth sensor are denoted

as p
(i)
raw = {x(i), y(i), z(i)}, i = 0...10 (i = 0 corresponds to the HipCenter joint).

Following the procedure proposed in [38], we first calculate normalized joint
positions, as well as their velocities and accelerations, and then augment the
descriptor with a set of characteristic angles and pairwise distances.

Joint positions. The skeleton is represented as a tree structure with the
HipCenter joint playing the role of a root node. Its coordinates are subtracted
from the rest of the vectors praw to eliminate the influence of position of the
body in space. To compensate for differences in body sizes, proportions and
shapes, we start from the top of the tree and iteratively normalize each skeleton
segment to a corresponding average “bone” length estimated from all available
training data. It is done in the way that absolute joint positions are corrected
while corresponding orientations remain unchanged:

p(i)(t) = p(i−1)
raw (t) +

p
(i)
raw(t)− p

(i−1)
raw (t)

||p(i)
raw(t)− p

(i−1)
raw (t)||

b(i−1,i) − p(0)
raw(t), (1)

where p
(i)
raw is a current joint, p

(i−1)
raw is its direct predecessor in the tree, b(i−1,i),

i = 1 . . . 10 is a set of estimated average lengths of “bones” and p are corre-
sponding normalized joints. Once the normalized joint positions are obtained,
we perform Gaussian smoothing along the temporal dimension (σ = 1, filter size
5× 1) to decrease the influence of skeleton jitter.

Joint velocities are calculated as first derivatives of normalized joint posi-
tions: δp(i)(t) ≈ p(i)(t+ 1)− p(i)(t− 1).

Joint accelerations correspond to the second derivatives of the same posi-
tions: δ2p(i)(t) ≈ p(i)(t+ 2) + p(i)(t− 2)− 2p(i)(t).

Inclination angles are formed by all triples of anatomically connected
joints (i, j, k), plus two “virtual” angles (Right,Left)Elbow -(Right,Left)Hand -
HipCenter :

α(i,j,k) = arccos
(p(k) − p(j))(p(i) − p(j))

||p(k) − p(j)|| · ||p(i) − p(j)||
(2)
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Azimuth angles β provide additional information about the pose in the
coordinate space associated with the body. We apply PCA on the positions
of 6 torso joints (HipCenter, HipLeft, HipRight, ShoulderCenter, ShoulderLeft,
ShoulderRight) to obtain 3 vectors forming the basis: {ux,uy,uz}, where ux is
approximately parallel to the shoulder line, uy is aligned with the spine and uz

is perpendicular to the torso.
Then for each pair of connected bones, β are angles between projections of

the second bone (v2) and the vector ux (v1) on the plane perpendicular to the
orientation of the first bone. As in the previous case of inclination angles, we
also include two virtual “bones” (Right,Left)Hand -HipCenter.

v1 = ux − (p(j) − p(i))
ux · (p(j) − p(i))

||p(j) − p(i)||2

v2 = (p(k) − p(j))− (p(j) − p(i))
(p(k) − p(j)) · (p(j) − p(i))

||p(j) − p(i)||2

β(i,j,k) = arccos
v1 · v2

||v1||||v1||

(3)

Bending angles γ are a set of angles between a basis vector uz, perpendicular
to the torso, and normalized joint positions:

γ(i) = arccos
uz · p(i)

||p(i)||
(4)

Pairwise distances. Finally, we calculate pairwise distances between all nor-

malized joint positions: ρ(i,j) = ||p(i)
n − p

(j)
n ||.

Combined together, this produces a 183-dimensional pose descriptor for each
video frame: D = [p, δp, δ2p,α,β,γ,ρ]T . Finally, each feature is normalized to
zero mean and unit variance.

A set of consequent 5 frame descriptors sampled at a given step s are con-
catenated to form a 915-dimensional dynamic pose descriptor which is further
used for gesture classification. The two subsets of features involving derivatives
contain dynamic information and for dense sampling may be partially redun-
dant as several occurrences of same frames are stacked when a dynamic pose
descriptor is formulated. Although theoretically unnecessary, this is beneficial in
the context of a limited amount of training data.

3.2 Depth and intensity video: convolutional learning

In our approach, two video streams serve as a source of information about hand
pose and finger articulation. Bounding boxes containing images of hands are
cropped around positions of the RightHand and LeftHand joints. Within each
set of frames forming a dynamic pose, hand position is stabilized by minimizing
inter-frame square-root distances calculated as a sum over all pixels, and corre-
sponding frames are concatenated to form a single spatio-temporal volume. The
color stream is converted to gray scale, and both depth and intensity frames are
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Fig. 2. Single-scale deep architecture. Individual classifiers are pre-trained for each
data modality (paths V1, V2, M) and then fused using a 2-layer shared fully connected
network initialized in a specific way (see Sec. 3.4). The first layers perform 3D con-
volutions followed by 3D max pooling shrinking the temporal dimension. The second
layers are exclusively spatial. Weights are shared across V1 and V2 paths.

normalized to zero mean and unit variance. Left hand videos are flipped about
the vertical axis and combined with right hand instances in a single training set.

During pre-training, video pathways are adapted to produce predictions for
each hand, rather than for the whole gesture. Therefore, we introduce an addi-
tional step to eliminate possible noise associated with switching from one active
hand to another. For one-handed gesture classes, we estimate the motion tra-
jectory length of each hand using the respective joints provided by the skeleton
stream (summing lengths of hand trajectories projected to the x and y axes):

∆ =

5∑
t=2

(|x(t)− x(t− 1)|+ |y(t)− y(t− 1)|), (5)

where x(t) is the x-coordinate of a hand joint (either left or right) and y(t) is its
y-coordinate. Finally, the hand with a greater value of ∆ gets assigned to the
label class, while the second one is assigned the zero-class label.

For each channel and each hand, we perform 2-stage convolutional learning of
data representations independently (first in 3D, then in 2D space, see Fig. 2) and
then fuse the two streams with a set of fully connected hidden layers. Parameters
of the convolutional and fully-connected layers at this step are shared between
the right hand and left hand pathways. Our experiments have demonstrated
that relatively early fusion of depth and intensity features leads to a significant
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increase in performance, even though the quality of predictions obtained from
each channel alone is unsatisfactory.

3.3 Fusion

Once individual single-scale predictions are obtained, we employ a simple voting
strategy for fusion with a single weight per model. We note here that introducing
additional per-class per-model weights and training meta-classifiers (such as an
MLP) on this step quickly leads to overfitting.

At each given frame t per-class network outputs ok are obtained via per-frame
aggregation and temporal filtering of predictions at each scale with corresponding
weights µs defined empirically through cross-validation on a validation set:

ok(t) =

4∑
s=2

µs

0∑
j=−4s

os,k(t+ j), (6)

where os,k(t + j) is the score of class k obtained for a spatio-temporal block
sampled starting from the frame t + j at step s. Finally, the frame is assigned
the class label l(t) having the maximum score: l(t) = arg mink ok(t).

3.4 Training

With an increasing number of data modalities, efficient training of large-scale
deep architectures becomes one of the most practically important issues in do-
mains such as gesture understanding. Due to an exploding number of parameters,
direct modeling of joint data distributions from all available data sources is not
always possible. The problem becomes even more crucial if we aim on simultane-
ous data fusion and modeling temporal sequences. In this work we used several
strategies, such as pre-training of individual classifiers on separate channels and
iterative fusion process of all modalities.

Recall Fig. 2 illustrating a one scale deep multi-modal convolutional network.
Initially it has 5 separate pathways: depth and intensity video channels for right
(V1) and left hands (V2), and a mocap stream (M).

We start with transforming of each data input to the form which is discrim-
inative for the given classification task by passing the data through a modality-
specific 3-step convolutional neural network (ConvD1-ConvD2 in the case of
depth data and ConvC1-ConvC2 in the case of intensity video) or by manual
feature extraction (in the case of mocap data, as it was described in Sec. 3.1).

From our observations, inter-modality fusion is effective at early stages if both
channels have the same nature and convey overlapping information. On the other
hand, mixing modalities which are weekly correlated, is rarely beneficial until
the final stage. Accordingly, in our architecture two video channels corresponding
to the same hand are fused immediately after feature extraction (hidden layers
HLV1 and HLV2), while exploring cross-modality correlations of complementary
skeleton motion and hand articulation is postponed by two layers (the fusion is
performed only at a shared layer HLS).
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(a)

(b)

(c)

Fig. 3. (a) Architecture of shared hidden and output layers. Output hidden units on
each path are first connected to a subset of neurons of the shared layer; (b) Structure of
parameters of shared hidden and output layers (corresponds to the architecture above);
(c) Energy structure of weights W1 after training. Diagonal blocks are dominated by
individual modalities, off-diagonal elements reflect cross-modality correlations.

Furthermore, proper initialization of the shared layer HLS before data fusion
is important. Direct fully-connected wiring of pre-trained paths to the shared
layer with randomly initialized weights leads to quick degradation of pre-trained
connections and as a result, our experience suggests that the joint representation
performs worse than a linear combination of the predictions of individual classi-
fiers. This may be related to the fact that the amount of data at our disposal is
still not sufficient for straightforward training of such large-scale architectures.

To address this issue, one possible strategy would be to train a classifier
on data that is arranged in a specific meaningful order, starting from clean
samples that are easy to classify and proceeding to the most complex ones,
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allowing the network to learn more and more sophisticated concepts (as it is
done, for example, in curriculum learning [39]). This approach has shown to yield
better generalization in less time. We employ a similar but alternative strategy,
changing the network itself in an iterative way, evolving from a weak prediction
model to increasingly more complex prediction models. The network is divided
into meaningful parts that are pre-trained separately and then combined. We
begin training by presenting modality-specific parts of the network with samples
where only one modality is present. In this way, we pre-train initial sets of
modality-specific layers that extract features from each data channel and create
more meaningful and compact data representations.

Once pre-training is completed, we proceed with integrating all channels, one
by one, in an iterative manner (see Fig. 3). We choose the order of modalities
in a specific way to first combine the data where the strongest cross-modality
structure is expected. This permits the model to gradually and effectively learn a
joint distribution, focusing representational power on where it is most effective,
while keeping the input compact and the number of parameters relatively small.
In the task of multi-modal gesture recognition, the video stream and articulated
pose alone convey sufficient information about the gesture, i.e. recognition can
be performed reasonably well from each channel independently. However, data
in the two depth channels, representing the articulation of each of the two hands,
is complementary and can improve accuracy.

To ensure that the joint model is meaningful, both the shared representation
layer and output layer are first configured to produce an optimal weighted sum
of individual modalities. The network parameters are further optimized starting
from this initialization. We start the fusion procedure by integrating two highly
dependent video channels (V1 and V2) with shared parameters, then add the
third visual modality (articulated pose, path M) (see Fig. 3).

4 Gesture localization

With increasing duration of a dynamic pose, recognition rates of the classifier
increase at a cost of loss in precision in gesture localization. Using wider sliding
windows leads to noisy predictions at pre-stroke and post-stroke phases, in some
cases overlapping several gesture instances at once. On the other hand, too short
dynamic poses are not discriminative either as most gesture classes at their initial
and final stages have a similar appearance (e.g. raising or lowering hands).

To address this issue, we introduce an additional binary classifier to distin-
guish resting moments from periods of activity. Trained on dynamic poses at
the finest temporal resolution s = 1, this classifier is able to precisely localize
starting and ending points of each gesture.

The module is implemented based on the same articulated pose descriptor
input to the MLP. All training frames labeled with some gesture class are used
as positive examples, while a set of frames right before and after such gesture
are considered as negatives. This strategy allows us to assign each frame with a
label “motion” or “no motion” with accuracy of 98%.
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Fig. 4. Gesture localization. Top: output predictions of the main classifier; Bottom:
output of the binary motion detector. Noise at pre-stroke and post-stroke phases in
the first case is due to high similarity between gesture classes at these time periods
and temporal inertia of the classifier.

To combine the classification and localization modules, frame-wise gesture
class predictions are first obtained as described in Section 3.3. Output predictions
at the beginning and at the end of each gesture are typically noisy (see the top
curve at Fig. 4). For each spotted gesture, its boundaries are extended or shrunk
towards the closest switching point produced by the binary classifier.

5 Experiments

The Chalearn 2014 Looking at People Challenge (track 3) dataset consists of
13,858 instances of Italian conversational gestures performed by different people
and recorded with a consumer RGB-D sensor. It includes color, depth video and
articulated pose streams. The gestures are drawn from a large vocabulary, from
which 20 categories are identified to detect and recognize [12]. Training data is
accompanied by a ground truth label for each gesture, as well as information
about its starting and ending points. The corpus is split into development, vali-
dation and test set, where the test data has been released after code submission.

5.1 Experimental setup

The hyperparameters used for the convolutional nets are provided in Table 1.
They were constant across temporal scales. Gesture localization was performed
with an MLP with 300 hidden units. All hidden units of both modules (framewise
classification and following localization) had rectified linear (ReLU) activations.
Hyperparameters were optimized on the validation data. Early stopping based
on a validation set was employed to prevent the models from overfitting. Optimal
fusion weights for the different temporal scales were found to be: µs=2 = 0.26,
µs=3 = 1.02, µs=4 = 2.20 and the weight of the baseline model (see Section 5.2)
was set to µERT = 1.
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Table 1. Hyperparameters chosen for the deep learning models.

Layer Parameters Layer Parameters

Convolutional layer ConvD1 25×5×5×3 Hidden layer HLV1 900
Convolutional layer ConvD2 25×5×5 Hidden layer HLV2 450
Convolutional layer ConvC1 25×5×5×3 Hidden layer HLM 300
Convolutional layer ConvC2 25×5×5 Hidden layer HLS 63

Max pooling, steps 2×2×3 Output layer 21

Table 2. ChaLearn 2014 “Looking at people Challenge (track 3)” results (top 10).

Rank Team Score Rank Team Score

1 Ours 0.8500 6 Wu [40] 0.7873
2 Monnier et al. [41] 0.8339 7 Camgoz et al. [42] 0.7466
3 Chang [43] 0.8268 8 Evangelidis et al. [44] 0.7454
4 Peng et al. [45] 0.7919 9 Undisclosed authors 0.6888
5 Pigou et al. [46] 0.7888 10 Chen et al. [47] 0.6490

We followed the evaluation procedure proposed by the challenge organizers
and adopted the Jaccard Index to quantify model performance:

Js,n =
As,n ∩Bs,n

As,n ∪Bs,n
, (7)

where As,n is the ground truth label of gesture n in sequence s, and Bs,n is
the obtained prediction for the given gesture class in the same sequence. Here
As,n and Bs,n are binary vectors where the frames in which the given gesture
is being performed are marked with 1 and the rest with 0. Overall performance
was calculated as the mean Jaccard index among all gesture categories and all
sequences, with equal weights for all gesture classes.

5.2 Baseline model

In addition to the main pipeline, we have created a baseline model based on an
ensemble classifier trained in a similar iterative fashion but on purely handcrafted
descriptors. It was done to explore relative advantages (and disadvantages) of
using learned representations and also the nuances of fusion. In addition, due to
differences in feature formulation as well as in the nature of classifiers, we found
it beneficial to combine the proposed deep network with the baseline method in
a hybrid model as separately two models make different errors (see Table 4).

We use depth and intensity hand images and extract three sets of features.
HoG features describe the hand pose in the image plane, and histograms of
depths describe pose along the third spatial dimension. The third set reflects
temporal dynamics of the hand shape.

HoG features from intensity images. First, we make use zero-mean and
unit variance-normalized intensity images to extract HoG features hint [48] at 9
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orientations from a 2-level spatial pyramid [49], i.e. from the whole image and a
magnified version of it containing 3× 3 cells.

Histograms of depths. 9-bin depth histograms hdep are extracted on two
scales from depth maps of both hands: from a whole map and from each quarter
of its upsampled version (by a factor of 2).

Derivatives of histograms. First derivatives of HoGs and depth histograms
are calculated: δh(t) ≈ h(t+ 1)− h(t− 1), where h can stand for both hint and
hdep. Combined together, these three sets of features form a 270-dimensional
descriptor [hint,hdep, δhint, δhdep] for each frame and, consequently, a descriptor
of dimension of 1350 for the dynamic pose of each hand.

Extremely randomized trees (ERT) [50] are adopted for data fusion and
gesture classification. Ensemble methods of this sort have generally proven to
be especially effective in conjunction with handcrafted features. During training,
we followed the same iterative strategy as in the case of the neural architecture.
First, three ERT classifiers are trained independently on (i) skeleton descriptors
(the same as described in Section 3.1)), (ii) video features for the right hand and
(iii) video features for the left hand. Once training is completed, features from
all modalities with importance above the mean value are selected and once again
fused for training a new, general ERT classifier. Feature importance is calculated
as mean decrease in impurity (i.e. total decrease in node impurity weighted by
proportion of samples reaching that node and averaged over all trees [51]).

At each step, ERT classifiers are trained with 300 estimators, an information
gain criterion, no restrictions in depth and

√
Nf features considered at each step

(where Nf is the total number of features).

5.3 Results and discussion

The top 10 scores of the challenge are reported in Table 2. Our winning entry
corresponding to a hybrid model (i.e. a combination of the proposed deep neural
architecture and a baseline model (see Section 5.2)) surpasses the second best
score by a margin of 1.61 percentage points. We also note that the multi-scale
neural architecture still demonstrates the best performance, as well as the top
one-scale neural model alone (see Tables 3 and 4).

Detailed information on the performance of neural architectures at each scale
is provided in Table 3, including the multi-modal setting and per-modality tests.
Interestingly, the discriminative power of articulated pose strongly depends on
the sampling step and achieves a maximum value in the case of large sliding
windows. On the other hand, video streams, containing information about hand
shape and articulation, seem to be less sensitive to this parameter and demon-
strate very good performance even for short spatio-temporal blocks. This signi-
fies that in the context of this dataset, a body pose is interesting exclusively in
terms of its dynamics, while hand postures are fairly discriminative alone, even
in nearly static mode. The overall highest performance is nevertheless obtained
in the case of a dynamic pose with duration roughly corresponding to the length
of an average gesture (s=4, i.e. 17 frames).
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Table 3. Performance at different temporal scales (deep learning + binary motion
detector). All numbers reported in the table are the Jaccard Index.

Step Articulated pose Video All

2 0.6938 0.7862 0.8188
3 0.7734 0.7926 0.8255
4 0.7891 0.7990 0.8449

all 0.8080 0.8096 0.8488

Table 4. Performance of different architectures (Jaccard Index).

Model W. motion detector W/o motion detector (Rank)

Deep learning (proposed) 0.8118 0.8488 (1)
ERT (baseline) 0.7278 0.7811 (6)
Deep learning + ERT (hybrid) 0.8143 0.8500 (1)

The comparative performances of the baseline and hybrid models are re-
ported in Table 4. In spite of low scores of the isolated ERT baseline model, fus-
ing its outputs with the ones provided by the neural architecture is still slightly
beneficial, mostly due to differences in feature formulation in the video channel
(adding ERT to mocap alone did not result in a significant gain).

For each combination, we also provide results obtained with a classification
module alone (without additional gesture localization) and coupled with the bi-
nary motion detector. The experiments have shown that the localization module
contributes significantly to overall performance.

The deep learning architecture is implemented with the Theano library. A
single scale predictor operates at frame rates close to real time (24 fps on GPU).

6 Conclusion

We have presented a general method for gesture and near-range action detec-
tion from a combination of depth and intensity video and articulated pose data.
The model can be extended by adding alternative sensory pathways without
significant changes in the architecture. It can elegantly cope with more spatial
or temporal scales. Beyond scaling, an interesting direction for future work is a
deeper exploration into the dynamics of cross-modality dependencies. Consider-
ing full signal reconstruction (similar to [35]), or explicit feedback connections
as in the case of Deep Boltzmann Machines [36] would be helpful in the case
when the input from one or more modalities is missing or noisy.
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