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Abstract— Model selection methods based on stochastic reg-
ularization have been widely used in deep learning due to
their simplicity and effectiveness. The well-known Dropout
method treats all units, visible or hidden, in the same way,
thus ignoring any a priori information related to grouping or
structure. Such structure is present in multi-modal learning
applications such as affect analysis and gesture recognition,
where subsets of units may correspond to individual modalities.
Here we describe Modout, a model selection method based on
stochastic regularization, which is particularly useful in the
multi-modal setting. Different from other forms of stochastic
regularization, it is capable of learning whether or when to
fuse two modalities in a layer, which is usually considered to be
an architectural hyper-parameter by deep learning researchers
and practitioners. Modout is evaluated on two real multi-modal
datasets. The results indicate improved performance compared
to other forms of stochastic regularization. The result on the
Montalbano dataset shows that learning a fusion structure by
Modout is on par with a state-of-the-art carefully designed
architecture.

I. INTRODUCTION

Multi-modality is a common setting in the fields of
gesture, activity, and emotion recognition, as cues captured
from multiple sensors, such as color and depth video, audio,
mocap, physiological data, etc., are often useful for making
predictions. Recently, deep learning methods have proven
effective on various multi-modal learning problems due to
their ability to learn complex and useful representations in
a domain-agnostic way [16], [17], [22]. However, fusing
multiple modalities effectively is an unsolved problem. It
is already well-known that good results are not likely to
be achieved by simply concatenating features belonging to
different modalities into a single “fully-connected” layer
[16]. Previous work has primarily focused on multi-modal
analysis of RGB-D action videos [20], [27], [28]. For ex-
ample, [27] proposed carefully designed multi-modal layers
for RGB-D object recognition, which fuses color and depth
information by enforcing the transformed features to share
a common part. [20] also attempted to discover the shared
and informative components of RGB-D signals using a
deep autoencoder-based nonlinear common component anal-
ysis. But the generalized performance of these methods to
modalities beyond RGB-D videos is unknown. [16] explored
the fusion of multiple modalities including RGB-D videos,
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mocap, and audio. They used a carefully-designed network
architecture to gradually fuse modalities, and they found
empirically that it is better to fuse modalities that have higher
correlation (e.g., visual modalities first, then motion capture,
then audio).

Learning what and when to fuse is a specific instance of
the more general problem of learning model structure. Global
aspects of structure, such as the number of layers or number
of units in a layer, are typically treated as model hyper-
parameters, and are found via techniques like grid search,
random search, or more recently, model-based optimization
[19]. Unfortunately, this separates learning a model architec-
ture from learning its parameters, which can convolute the
process of model search. There are a few recent cases in
which researchers have considered learning model structure
and parameters jointly. [3] showed how depth and width can
be gradually added to Inception networks by transferring
knowledge from one trained network to another. [14] pro-
posed “Blockout”, a method for simultaneous regularization
and model selection via structured (masked) weight matrices.
Blockout, and its predecessors [29] are motivated by the de-
sire to learn separate features for subsets of related categories
for recognition problems. In other words, they are focused on
the “top” of the network, towards the classifier. In this work,
we are primarily interested in the way that modality-specific
representations are fused, so we start from the “bottom”.
What is common to these approaches, and ours, is a desire
to perform structure learning via backpropagation.

In the context of multi-modal gesture recognition, [16]
introduced a Dropout-like regularization scheme called Mod-
Drop. During training, ModDrop randomly removes the input
from one or more modalities. This was shown, at test time, to
improve robustness to corruption or loss of modalities. Our
proposed Modout algorithm in this paper takes a different
approach than ModDrop [16]. Instead of dropping the units
belonging to a modality, in Modout the connections between
the units in two adjacent layers are dropped with prior
knowledge of modality-specific groupings. It has mainly
two advantages over ModDrop. First, Modout can learn
whether and when to fuse two modalities by optimizing
the probabilities of dropping the connections between the
two modalities. Second, Modout can be applied to any layer
– not just the input layer. Although outside the scope of
this paper, Modout could, in theory, apply to other types of
known groupings beyond modalities.978-1-5090-4023-0/17/$31.00 c©2017 IEEE



II. RELATED WORK

Advances in regularization have played an important role
in deep learning’s advancement across large-scale applica-
tions. Traditional methods of regularization such as early
stopping, weight decay, weight constraints, or addition of
noise during training can be viewed as a means of limiting
the capacity within a model and therefore its ability to overfit.

A new class of regularization methods that are stochastic
have been widely used in deep learning due to their sim-
plicity and effectiveness. At training time, these methods
randomly remove certain structural elements of the network
for each presented example, or collection of examples. The
elements can be hidden or visible units (Dropout [21]),
connections (DropConnect [26]), or even layers (stochastic
depth [8]). At test time, the original network is used for
prediction with a rescaling factor to compensate for the
absence of elements during training. By pruning the network
in a stochastic manner, stochastic regularization methods
can be considered as a kind of ensemble that improves
generalization via model averaging.

In the standard Dropout method, all units in a layer
are dropped at the same rate, and therefore it ignores any
structuring of the inputs which may result in more correlation
among certain inputs. For example, pixels in an image are
more correlated if they are spatially adjacent to each other.
Also, for multi-modal learning, there are more correlations
for features within a modality. Recently, several variants
of Dropout have been proposed which aim to exploit this
correlation. Tompson et al. [25] proposed SpatialDropout for
convolutional layers, in which adjacent pixels in the drop-
out feature maps are either all dropped-out or all preserved.
Neverova et al. [16] proposed ModDrop for multi-modal
learning, in which the input features belonging to the same
modalities are either all dropped-out or all preserved. These
methods have been shown to outperform standard Dropout,
while their drop-out rates are pre-defined hyper-parameters.

[10] have proposed a method of learning the structure of
deep neural networks via deterministic regularization. They
insert a sparse diagonal matrix between each pair of fully
connected layers, with entries of l1 penalized. This implicitly
defines the size of the effective weight matrices at each layer,
and has a similar effect to Dropout.

An exception to the Dropout-variants is Blockout [14],
which is also strongly relevant to our work. Blockout gener-
alizes Dropout by introducing cluster assignments for each
unit. Both the (implicit) Dropout rates and the parameters are
learned using backpropagation. Similar to Dropout and Drop-
Connect, Blockout does not use the information regarding
structural groupings among units, and the number of clusters
needs to be set and tuned. Instead, at every layer, Modout ties
the clusters to the modalities, and only learns the probability
of fusion between each pair of modalities. The result is a
substantial reduction in number of free parameters and one
less hyperparameter to tune.

III. MODEL DESCRIPTION

In this section, we give an overview of the Modout
method. We first introduce its formulation as a modality-
aware, weight masking stochastic regularizer. We then deal
with the non-differentiability of the sampling step as it relates
to gradient backpropagation.

A. Parameter Regularization via a Stochastic Mask

Most stochastic regularization methods can be considered
as applying a stochastic mask to the weight matrix. A
standard feed-forward network layer j with nj units and
stochastic weight-masking can be written as:

xj = σ(W ′jxj−1) = σ((Mj ◦Wj)xj−1) (1)

where xj denotes layer output, σ(·) is the sigmoid activation
function, ◦ denotes the Hadamard product (i.e., elementwise
multiplication), W is a unconstrained weight matrix, W ′ is a
masked weight matrix, and M is a stochastic mask. The bias
term is included in the weight matrix to simplify notation.

Different masks for different stochastic regularization
methods are shown in Fig. 1. For Dropout,

Mj = mjm
T
j−1 (2)

where mj represents a binary vector of nj , mj ∼
Bernoulli (pj), where pj is the drop-out rate in layer j; for
DropConnect, Mj ∼ Bernoulli (pj). For Blockout,

Mj =
1

K
CjC

T
j−1. (3)

K is the predefined number of clusters, Cj is a nj × K
binary cluster assignment matrix, and Cj ∼ Bernoulli(Pj),
where Pj is a probability matrix of the same size of Cj . So
for a connection between unit s in layer j − 1 and unit t in
layer j, the probability of being dropped is

ps,t =
1

K
pT
j−1,spj,t. (4)

Therefore, the mask generated by Blockout shown in
Fig. 1(c) is the same as DropConnect, but generated using
different probabilities for different units and different clus-
ters.

The proposed Modout method is similar to Blockout in
the sense that units are assigned to clusters. But instead of
generating the cluster assignments randomly, the clusters in
Modout are assigned based on knowledge of modalities. We
assume that Nm modalities (paths) are input to the network,
as illustrated by the example given in Fig. 3 showing different
paths for gesture recognition. The Modout layers fuse the
different paths – in Fig. 3 they replace the handcrafted
and manually optimized network structure shown in the red
dashed rectangle.

Therefore, in our case, each unit is assigned a unique
cluster label, while in Blockout units can be assigned to more
than one cluster. The number of units that belong to each
modality in a hidden layer can be set to be proportional
to the number of features in the input layer if it is not
otherwise specified. During the entire process, the cluster
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Fig. 1. Stochastic weight masks (M ) for different stochastic regularization methods. Black regions mean the weights in the same location are made zero
in the forward pass, and white (stochastic) or blue (deterministic) means the weights are preserved. Note that (c) only shows a special case of Blockout
when each unit belongs to no more than one cluster, and also the rows and columns have been arranged.

assignments for all the units remain the same. Different from
Blockout, which learns the probability of assigning units to
clusters, Modout learns the probabilities of connecting the
units belonging to different modalities.

In Modout, given Nm modalities, the stochastic mask Mj

for layer j is defined as

Mj = CjUjC
T
j−1 (5)

where Cj is a Nj×Nm binary matrix and Uj is a Nm×Nm

binary matrix, Uj ∼ Bernoulli(Pj). Pj is a modality-wise
probability matrix in the same size as Cj , its elements are
in the range of [0, 1].

The binary mask Cj is used to control the assignment of
units to modalities, and fixed during training. Also, each unit
is assigned to exactly one modality, so that CjUjC

T
j−1 gives

a binary block-structured matrix as shown in Fig. 1 (d). We
note that unlike ModDrop, which is only used for the input
layer, we extend the concept of modalities over the network,
grouping units by “modalities” throughout the network from
the input up to the penultimate layer. In our experiment, the
number of hidden units assigned to each modality is simply
set to be evenly distributed.

In our work, P is trained together with the rest of the
network parameters. However, the diagonal elements of P
are fixed to unity in order to guarantee that all the signals
for a modality can be passed to the units which belong to
that modality in the next layer.

The off-diagonal elements of U describe if two modalities
need to be fused. If U is an identity matrix, the layer
is equivalent to multiple independent layers for different
modalities (i.e. no cross-talk); if U is a matrix of ones, all the
modalities are fused in this layer; in other cases, only some
of the modalities are fused. The corresponding architectures
are shown in Fig. 2.

At inference time, it is necessary to average over the
stochastic U ’s which define the connectivity to approximate

an ensemble of fusion architectures. The adjusted weight
matrix we use is given by:

E
[
Wj ◦ CjUjC

T
j−1

]
= Wj ◦ CjPjC

T
j−1. (6)

We note that the number of additional parameters to learn
for a mask is only Nm(Nm − 1), which is significantly less
than Blockout which requires learning K probabilities for
each unit. A summary of ModDrop, Blockout, and Modout
is shown in Table I.

B. Learning Modality Fusion via Gradient Descent

To learn the probability matrix P , ideally we want to update
it via gradient descent like the other parameters in the
network. However, the gradient of P is not available because
P is related to the cost function by sampling, which is
not differentiable. [14] addressed a similar problem when
attempting to compute the gradient of the loss with respect
to the cluster probabilities parameterizing the cluster assign-
ments. They simply used the gradient of the loss with respect
to the cluster assignments, masked by the assignment matrix
such that the gradient of unselected clusters is zero. Here,
we derive an alternative solution using the re-parametrization
trick [6]. The purpose of the trick is to make the stochasticity
an input to the network instead of an operator, so that the
entire network can be considered as deterministic. Here, we
define r as a random number generated uniformly from
[0, 1]. Also, we introduce free variables to be optimized
as P ′ where P = σ(P ′). The P ′ are unconstrained while
P ∈ [0, 1].

Using the re-parametrization trick, the binary matrix U
can be re-formulated into

U =
1 + Sign(σ(P ′)− r)

2
(7)

where Sign(x) is the sign function, which is 1 if x ≥ 0, or
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Fig. 2. Three typical fusion architectures achievable by Modout, and their corresponding weight masks. Best viewed in colour.

TABLE I
COMPARISONS OF MODDROP, BLOCKOUT, AND MODOUT.

Blockout ModDrop Modout
Cluster assignment stochastic static based on knowledge of modalities same as ModDrop with extension to hidden layers
Num of clusters assigned to each unit non-deterministic one and only one one and only one
Applicable to hidden layers yes no yes
Probabilities to learn clusters assigned to units n/a connections between different modality groups
Num of free parameters to learn K ·Nj n/a Nm(Nm − 1)

otherwise −1, and σ(·) is the Sigmoid function1.
The sign function has zero gradient almost everywhere,

making direct gradient descent still not applicable. We
instead apply the “straight-through estimator” which has
been used for estimating and propagating gradients through
stochastic discrete units [1]. This estimator has been used in
other problems such as binarized neural networks [9]. Here
we use the same notation as [9]. Considering q = Sign(t),
and abbrevating the partial derivates of the loss L with
respect to t and q as gt = ∂L

∂t and gq = ∂L
∂q respectively,

the straight-through estimator is defined as

gt = gq1|t|≤1. (8)

It basically preserves the gradient when t is small while
ignoring the gradient when t is too large. Since |Σ(P ′) −
0.5| ≤ 0.5 < 1, gt can be always replaced by gq in our
problem. Therefore, we have

∂U

∂P
=

1

2
. (9)

Below are the derivatives of the variables to update in
Layer j. The gradient of the loss with respect to the un-
masked weight matrix W can be computed as

∂L

∂Wj
=

∂L

∂W ′j

∂W ′j
∂Wj

=
∂L

∂W ′j
◦ CjUjC

T
j−1, (10)

1Noting here that we overload the σ notation. In the previous sub-section
it was reserved to be a generic element-wise nonlinearity.

where ∂L
∂W ′

j
is calculated by the product of all gradients

from the loss function backwards down to the jth layer
using the chain rule, as in standard weight updates made
by backpropagation.

Considering Eq. 9 and using the chain rule, the gradient
of P ′ can be derived as:

∂L

∂P ′j
=

∂L

∂Uj

∂Uj

∂Pj

∂Pj

∂P ′j
=
σ(P ′)(1− σ(P ′))

2

∂L

∂Uj
, (11)

and

∂L

∂Uj
=

∂L

∂W ′j

∂W ′

∂Uj
=

∂L

∂W ′j
(Wj ◦ CjC

T
j−1). (12)

This way of updating the probabilities via Eq. 11 is similar
to [14] because Eq. 11 can also be considered as updating the
probabilities by the gradient of the cluster assignments. The
only difference is that Eq. 11 uses all the cluster assignments,
not only the selected ones, with a rescaling factor of 1/2.
Though there is no significant difference between the two
methods according to the experiments, our proposed update
has a more principled derivation.

IV. EXPERIMENTS

In this section, we investigate the ability of Modout
to learn model structure competitive with other stochastic
regularization methods on three datasets.



TABLE II
TEST ERROR (%) ACROSS DIFFERENT REGULARIZERS ON THE MULTI-MODAL MNIST DATASET.

Backprop Dropout Blockout ModDrop ModDrop+Dropout Modout Modout+Dropout
Valid 1.70 ± 0.04 1.11 ± 0.03 1.25 ± 0.03 1.42 ± 0.06 0.97 ± 0.03 1.05 ± 0.09 0.86 ± 0.02
Test 1.87 ± 0.06 1.16 ± 0.03 1.19 ± 0.07 1.59 ± 0.09 1.08 ± 0.05 1.18 ± 0.08 0.99 ± 0.04

A. Multi-Modal MNIST Dataset

First, we compare the related algorithms using a simulated
multi-modal dataset created from the MNIST dataset [11], a
well-known benchmark popular in the deep learning com-
munity. MNIST consists of 28 × 28 grayscale images of
handwritten digits and their associated labels. 60,000 images
are used for training and 10,000 images are used for testing.

The multi-modal setting in our experiment is similar to
[16]. All of the images are split evenly into 4 quarters, each
of which is treated as one “modality”. Compared to the
real modalities, features in different simulated modalities are
more similar and highly-correlated because they come from
the same source.

We fix the architecture to be a multi-layer perceptron
(MLP) with three hidden layers, without data augmentation
or data preprocessing. The rectified linear unit [15] is used
as the activation function for all the units. Different from
[16] that tried to optimize the number of units, the numbers
of units in the hidden layers are set to [1200, 1200, 40]. Each
modality is first pretrained using an MLP of two hidden
layers (400 units for each) with Dropout. The dropout rates of
Dropout, ModDrop, and the Modout + Dropout combination
are set to 0.2 for the first layer and 0.5 for the other layers.
For Blockout and Modout, the probabilities of dropping are
initialized to 0.5 to maximize the uncertainty as suggested
in [25]. Note that when we apply Modout + Dropout, there
is both a Dropout and Modout rate. The number of clusters
in Blockout is optimized to 2. Each test is repeated 10 times
with different random initialization of the parameters.

The result is shown in Table II. We see that Dropout with
carefully chosen dropout rates achieves significantly better
performance than standard back-propagation without using
any stochastic regularization, and performs comparably to
Blockout, which learns dropout rates automatically. Mod-
Drop has been shown to be robust to missing or corrupted
modalities [16], but it is not comparable to Dropout because
it is only performed on the input layer. Combining ModDrop
with Dropout improves results significantly and performs
better using Dropout alone. The combination of Modout and
Dropout achieves a state-of-the-art 0.991 test error rate on
multi-modal MNIST using a simple MLP structure.

B. CORNELL Activity Dataset (CAD-60)

The second dataset that we considered was the Cornell
Human Activity Dataset [23] which is a widely used bench-
mark dataset for human activity recognition. The dataset
consists of RGBD images obtained from a Kinect sensor
that recorded activities of 4 different persons performing
12 unique activities (plus one activity defined as “random
movement”) in unstructured indoor environments, yielding
60 total cases. Activities include actions such as brushing

teeth, relaxing on a chair, writing on a white-board and
drinking water.

Five different descriptors that captured body pose and
motion information as reported in [24] were used as inputs to
the multi-modal fusion network. It is trivial to add additional
inputs to the multi-modal fusion architecture, for example,
adding raw image frames or dense optical flow information
as we have designed the multi-modal fusion architecture to
be flexible in the number of input modalities that could
be fused. The Body Pose, Hand Position and Motion In-
formation descriptors were concatenated to form a 459-
dimensional skeletal feature. This combined skeletal feature
defines one modality. The SimpleHOG and SkeletalHOG
descriptors were computed for both depth and RGB frames,
each forming a separate modality, for a total of four visual
modalities and one skeletal modality.

In our experiments, we used the so-called “new person”
setting where the model was trained on three persons, and
tested on the fourth. 70% of the data was used for training
and 30% was used for testing. There is a total of 907 features
from five modalities. A MLP with three fully-connected
layers and one softmax layer is adopted for evaluation. The
number of neurons in each of the two hidden layers is set
to 1500, and the number of output classes is 12. Different
stochastic regularization methods are applied to the hidden
layers.

The results shown in Table III demonstrate that the use
of either Dropout or Blockout does not improve the perfor-
mance on this dataset. Using ModDrop with Dropout can
slightly improve the performance. The combination of Mod-
out and Dropout achieves the best overall result. However, it
is still largely behind the reported state-of-the-art result [4].
This is mainly due to our simple, fixed front-end compared
to other works that use convolutional architectures.

C. Montalbano Gesture Recognition Dataset
The Montalbano dataset, originally released as part of the

Chalearn 2014 Looking at People Challenge (Track 3) [5], is
used to evaluate our approach. It consists of 13,858 instances
of Italian conversational gestures performed by different peo-
ple and recorded with a consumer RGB-D sensor. It includes
color, depth video and mocap (articulated pose) streams. The
gestures are drawn from a large vocabulary, from which 20
categories are identified to be detected and recognized, while
the rest are considered as arbitrary movements. Each gesture
in the training set is accompanied by a ground truth label
as well as information about its start-and-end points. An
additional audio modality not in the 2014 competition was
re-synced and added in [16], which we also consider.

The input to the network is a so-called dynamic pose
consisting of synchronized multi-modal measurements con-
catenated from several frames temporally spaced with a given



TABLE III
CLASSIFICATION ERROR (%) USING DIFFERENT METHODS ON THE CAD-60 DATASET.

Backprop Dropout Blockout ModDrop+Dropout Modout+Dropout
CV-1 valid 17.84 19.48 16.87 18.05 18.18

test 29.81 30.44 32.42 33.75 31.54
CV-2 valid 29.19 29.30 29.79 26.92 29.59

test 18.22 19.68 17.99 20.19 17.96
CV-3 valid 24.26 25.26 23.03 18.45 20.89

test 43.67 44.32 41.58 38.67 42.03
CV-4 valid 28.03 28.03 23.91 23.90 26.56

test 18.51 16.98 19.03 16.80 15.68
average valid 24.83 25.52 23.40 23.90 23.81

test 27.55 27.85 27.76 27.35 26.80

stride. In [16], different networks are trained on different
strides and results are combined. In our experiments, we
only use a single temporal stride of 4 for sampling for all the
modalities, as the result is very close to using a combination
of strides as also shown in [16].

1) Network Architecture and Experimental Setup: The
network architectures for testing are based on the one in
[16], as shown in Fig. 3. In that work, each modality is pre-
trained as an individual classifier (video modalities use two-
stage convolutional networks, the audio stream uses a one-
stage convolutional network, and the mocap stream uses a
MLP with two hidden layers). The penultimate layer of each
modality-specific classifier is then connected via a shared
hidden layer to a softmax output and the whole system is
then trained by a two-stage procedure. First, the weights to
and from the shared layer are initialized such that the overall
network performs a simple fusion of modalities. Then, this
constraint is gradually relaxed to permit a more flexible
fusion strategy. In addition to this careful initialization and
relaxation process, prior knowledge influences the order in
which modalities are fused. The depth and intensity channels
corresponding to each hand are fused (at HLV1 in Fig. 3),
while cross-modality fusion involving the other channels are
postponed until the shared layer. This network architecture
achieved first place out of 17 teams in the ChaLearn 2014
Looking at People Challenge (gesture recognition track) [5].

Two experiments are conducted for performance eval-
uation of Modout, where the first aims to compare the
performance of Modout with other stochastic regularization
methods using a simple network architecture, namely a MLP.
Due to the high dimensionality and limited number of train-
ing sequences, directly applying a MLP to the raw data leads
to poor generalization. Instead, the intermediate outputs from
the first fully-connected layer of the pre-trained classifiers are
used as the input features for each modality. The number of
total input features is 2600, including 800 audio features, 900
mocap features, 450 color features, and 450 depth features.
Color and depth features have been concatenated into a single
modality to limit the number of modalities (they are split
in the second experiment). Methods for comparison include
standard (non-regularized) backpropagation, Dropout, Block-
out, ModDrop, Modout, and the combination of Modout
and Dropout. A MLP with two hidden layers followed by
a softmax regression layer is used for all tests. The number
of units in each hidden layer is set to 3,000. This experiment

was performed on data released early in the challenge. The
standard practice of removing frames with no gesture present
was applied during preprocessing. Frames are divided into
training, validation, and testing data using the same split as
in [16].

The second experiment aims to evaluate the performance
of Modout by integrating it into the network architecture in
[16]. This is done by concatenating each of the last two layers
for each modality into a single layer and adding connections
which are modulated by Modout. Thus, the network structure
in the red box in Fig. 3 becomes a MLP with two hidden
layers and one softmax regression layer. The real test data
released later in the challenge are used for testing. Similar
to [16], we first use a motion detector to remove the frames
without motion in the test data, and then use the learned
model to classify all the frames. The Jaccard index is used
to measure performance:

Js,n =
|As,n ∩Bs,n|
|As,n ∪Bs,n|

, (13)

where As,n and Bs,n denote the binary ground truth and pre-
dictions for gesture category n and sequence s respectively.
The final score is measured by the mean Jaccard index over
all categories and sequences (higher is better).

2) Experimental Results and Analysis: Table IV shows the
result of different stochastic regularization methods using the
pre-trained intermediate representation of each modality as
input. The drop-out rate is set to 0.2 for the first hidden
layer and 0.5 for the second hidden layer. The number
of clusters in Blockout is set to 2 which was found em-
pirically to have the best performance. For both Blockout
and Modout, the probabilities are initialized to 0.5 in order
to maximize uncertainty at the beginning of training. The
results show that there is no significant difference between
Dropout and ModDrop, while Modout and its combination
with Dropout significantly outperform the other methods
which ignore modality information. In this first experiment
we report performance on classification of dynamic poses (as
opposed to gesture localization), therefore the metric used is
classification accuracy. The best test accuracy is achieved by
a combination of Modout and Dropout.

Table V gives results on full gesture detection and lo-
calization reported as Jaccard Index (Eq. 13). It shows
that our approach (Modout + Dropout) achieves a score
of 0.888, which is higher than [16] using either Dropout



Fig. 3. Network architecture for multi-modal gesture recognition (reproduced from [16]). The structure in the red box is modified into a MLP in the
second experiment.

TABLE IV
CLASSIFICATION ACCURACY(%) OF DIFFERENT STOCHASTIC REGULARIZATION METHODS ON MONTALBANO. NOTE THAT WE FOLLOW THE SAME

EVALUATION PROCEDURE AS [16] AND [18].

BackProp Dropout Blockout ModDrop
+Dropout Modout Modout

+Dropout
Validation accuracy 91.1 91.5 91.7 92.1 91.6 92.9
Test accuracy 92.0 92.5 92.6 92.4 93.6 93.8

or ModDrop + Dropout on a similar but carefully chosen
fusion architecture. Compared to previously reported results,
our result is only eclipsed by the state-of-the-art, [18] which
uses a combination of temporal convolution layers and Long
Short-Term Memory (LSTM). One possible reason is that the
temporal correlation between two adjacent spatio-temporal
blocks is not considered in our approach. Our result could
be further improved by using a simple 1-D Markov Random
Field model as a post-processing step.

V. USING MODOUT FOR STRUCTURE PRUNING

To demonstrate that the probabilities learned by Modout
are non-trivial, we show the improvement of using the
probabilities to prune the network structure. A binary mask
is created using the probabilities, e.g., the connections with
a probability of lower than 0.5 are removed. The pruned
structure is compared with early fusion and late fusion,
which are the two most common fusion strategies. They are
essentially two extremes of network structures: early fusion
corresponds to the network structure without any pruning,
and late fusion corresponds to the structure where the off-
diagonal connections of all but the last layer are pruned.

The experiment is performed on two datasets: the multi-
modal MNIST dataset and the Montalbano dataset consid-

ered above. Similar to the previous experiment, four modal-
ities of evenly-split sub-images from the MNIST dataset,
and intermediate features of three modalities including video,
skeleton, and audio from the Montalbano dataset are used.
The network is first trained with Modout. Then the network
is pruned using the learned probabilities, and the model is
trained again. A similar idea of pruning the network structure
followed by re-training can be found in [7].

The results are provided in Table VI. We see that early
fusion is better than late fusion for the MNIST dataset, while
late fusion is better for the Montalbano dataset. The rationale
behind this pattern is that the modalities of the MNIST
dataset are highly correlated because they are from the same
source, while the audio, video, and skeleton modalities in
the Montalbano dataset are less correlated. We can also
see that the structure learned by Modout outperforms both
early fusion and late fusion. For the case of Montalbano,
we also see that binarizing the probabilities and fine-tuning
deterministically learns a superior model.

VI. CONCLUSIONS

We have presented Modout, a generalization of ModDrop,
which is useful for multi-modal learning. It can be applied to
multiple layers, and is capable of learning modality fusion.



TABLE V
COMPARISON OF STATE-OF-THE-ART RESULTS RECENTLY PUBLISHED FOR THE MONTALBANO TASK.

Approach Jaccard index
Wu et al. (2016) (HMM, DBM, 3DCNN) [30] 0.809
Chang (2014) (MRF, KNN, HoG) [2] 0.827
Monnier et al. (2014) (AdaBoost, HoG) [13] 0.834
Neverova et al. (2016) (Dropout) [16] 0.876
Neverova et al. (2016) (ModDrop + Dropout) [16] 0.880
Pigou et al. (2015) (Temp Conv + LSTM) [18] 0.906
Ours (Modout + Dropout) 0.888

TABLE VI
COMPARISON WITH EARLY FUSION AND LATE FUSION (ERROR RATES IN PERCENTAGES).

MNIST Montalbano
Modout 1.03 6.44
Early fusion 1.19 7.23
Late fusion 1.88 6.94
Re-trained using learned structure 1.04 6.01

While motivated by the challenge of learning fusion struc-
ture, Modout can leverage any known grouping of inputs.

We presented experimental results on three multi-modal
datasets, which show that Modout outperforms other stochas-
tic regularization methods, and achieves close to the state-of-
the-art for gesture recognition. Future work includes applying
the approach to other types of neural network structures and
validating on other multi-modal datasets, specifically those
with a high number of modalities.
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